Honors Problems

Kinetic and Gravitational Energy Transformations Name: \qquad P: \qquad

Determine whether the objects in the following problems have kinetic or gravitational potential energy.
Choose the correct formula and solve for the energy.

- Kinetic Energy: $K=(1 / 2) \times m \times v^{2}$
- Gravitational potential energy: $\mathbf{P E g}=$ mass \times force of gravity \times height

> Energy= joules
> Mass= kilograms
> Velocity $=\mathrm{m} / \mathrm{s}$
> Force of gravity $=(10 \mathrm{~N} / \mathrm{kg})$

1. You serve a volleyball with a mass of 2.1 kg . The ball leaves your hand with a speed of $30 \mathrm{~m} / \mathrm{s}$. The ball has energy stored as \qquad . Calculate it below:
2. A baby carriage is sitting at the top of a hill that is 21 m high. The carriage with the baby has a mass of 12 kg . The carriage has energy stored as \qquad . Calculate it below:
3. A car is traveling with a velocity of $40 \mathrm{~m} / \mathrm{s}$ and has a mass of $1,120 \mathrm{~kg}$. The car has energy stored as
\qquad . Calculate it below:
4. A cinder block is sitting on a platform 20 m high. It has a mass of 8 kg . The block has energy stored as
\qquad . Calculate it below:
5. There is a bell at the top of a tower that is 45 m high. The bell has a mass of 19 kg . The bell has energy stored as \qquad . Calculate it below:
6. A roller coaster is at the top of a 72 m hill and has a mass of 97 kg . The coaster (at this moment) has energy stored as \qquad . Calculate it below:
7. Calculate the kinetic energy of a 3 kg ball that is rolling at 2 meters per second.
8. Two boxes were lifted by a machine. Box A had a mass of 2 kg , and was lifted at a speed of $2 \mathrm{~m} / \mathrm{sec}$. Box B had a mass of 4 kg and was lifted at a rate of $3 \mathrm{~m} / \mathrm{sec}$.
a. Which box had more kinetic energy while it was being lifted? Show your calculations.
b. Which box had more gravitational potential energy when it was lifted to a distance of 10 meters? Show your calculations.
